Tech Trend - Privacy Operations Infrastructure

Tech Trend - Privacy Operations Infrastructure

Written by

Brendon Schmidt

Published on

August 20, 2019

5 Areas to Watch: Part 1

As early-stage technology investors, we see a wide range of companies working on game-changing businesses. This 5 Part Blog Series shares what our firm has been most intrigued by within the early-stage Enterprise B2B IT Infrastructure space in the first half of 2019.Trends we noticed led to the 5 Areas to Watch which we’ll cover in this 5 Part Series:

Privacy Operations Infrastructure (PrivOps)The looming threats of GDPR & CCPA will shift the way regulators define privacy and security. Enterprises realize that as these start to get enacted, more risks will arise in acquiring, securing and maintaining personal information. Also, with highly publicized failures from several large organizations in data privacy over the last few years, organizations now realize the negative consequences of privacy violations go far beyond regulatory financial penalties. Brand reputation, customer attrition, and revenue loss are all at stake. Privacy and Data Security has emerged to be a “continuous” need of the enterprise and we’re seeing the need for platform technology that manages privacy, risk, and compliance continuously, which has given birth to Privacy Ops Infrastructure (PrivOps) space.Technologies that address next-gen data privacy standards will play a huge role in Enterprises getting up to speed with the new regulations and customer expectations. After reviewing the market, the main point we emphasize is that maintaining structured data is relatively easy and many solutions will be able to do this. Managing unstructured data will be a much bigger problem and is an increasing blind spot for organizations. If you have not already started, we recommend kicking off plans to manage these large sets of unstructured data. We see these 3 factors driving this:

  1. Growing volume of unstructured data = more inherent risk. Unstructured data is harder to manage across the organization, which creates more blind spots. Also, it inherently holds more sensitive data, while being more prone to access from unauthorized parties.
  2. The approach used for structured data doesn’t scale to unstructured data. It requires AI to solve.
  3. Understanding relationships between entities in large volumes of text is very hard to do

Sierra Ventures recently invested in a company in this domain called Text IQ, which is a machine learning system that parses and understands sensitive corporate data. Text IQ started as co-founder Apoorv Agarwal’s Columbia thesis project titled “Social Network Extraction from Text.” The algorithm he built was able to read a novel, like Jane Austen’s Emma, for example, and understand the social hierarchy and interactions between characters. This people-centric approach to parsing unstructured data eventually became the kernel of Text IQ, which helps corporations find what they’re looking for in a sea of unstructured, and highly sensitive, data.Resources: